Search results for "Normal-Wishart distribution"
showing 4 items of 4 documents
Inference based on the affine invariant multivariate Mann–Whitney–Wilcoxon statistic
2003
A new affine invariant multivariate analogue of the two-sample Mann–Whitney–Wilcoxon test based on the Oja criterion function is introduced. The associated affine equivariant estimate of shift, the multivariate Hodges-Lehmann estimate, is also considered. Asymptotic theory is developed to provide approximations for null distribution as well as for a sequence of contiguous alternatives to consider limiting efficiencies of the test and estimate. The theory is illustrated by an example. Hettmansperger et al. [9] considered alternative slightly different affine invariant extensions also based on the Oja criterion. The methods proposed in this paper are computationally more intensive, but surpri…
A matrix-valued Bernoulli distribution
2006
AbstractMatrix-valued distributions are used in continuous multivariate analysis to model sample data matrices of continuous measurements; their use seems to be neglected for binary, or more generally categorical, data. In this paper we propose a matrix-valued Bernoulli distribution, based on the log-linear representation introduced by Cox [The analysis of multivariate binary data, Appl. Statist. 21 (1972) 113–120] for the Multivariate Bernoulli distribution with correlated components.
Multivariate exponential smoothing: A Bayesian forecast approach based on simulation
2009
This paper deals with the prediction of time series with correlated errors at each time point using a Bayesian forecast approach based on the multivariate Holt-Winters model. Assuming that each of the univariate time series comes from the univariate Holt-Winters model, all of them sharing a common structure, the multivariate Holt-Winters model can be formulated as a traditional multivariate regression model. This formulation facilitates obtaining the posterior distribution of the model parameters, which is not analytically tractable: simulation is needed. An acceptance sampling procedure is used in order to obtain a sample from this posterior distribution. Using Monte Carlo integration the …
Affine equivariant multivariate rank methods
2003
The classical multivariate statistical methods (MANOVA, principal component analysis, multivariate multiple regression, canonical correlation, factor analysis, etc.) assume that the data come from a multivariate normal distribution and the derivations are based on the sample covariance matrix. The conventional sample covariance matrix and consequently the standard multivariate techniques based on it are, however, highly sensitive to outlying observations. In the paper a new, more robust and highly efficient, approach based on an affine equivariant rank covariance matrix is proposed and outlined. Affine equivariant multivariate rank concept is based on the multivariate Oja (Statist. Probab. …